Aom: an Efficient Approach to Restore Actor-actor Connectivity in Wireless Sensor and Actor Networks
نویسندگان
چکیده
Wireless sensor and actor networks (WSANs) consist of powerful actors and resource constraint sensors that are linked together in wireless networks. They mostly rely on actors to make proper decisions and perform desired coordination to achieve the goals of the entire network. They are usually deployed in critical applications and actor-actor network connectivity is thus vital to their effective utilization. Since WSAN applications are mostly deployed in harsh environments, actor nodes may fail and so partition their network. We propose a comparatively more efficient distributed approach, nicknamed AOM, to restore actor-actor connectivity upon the failure of any actor. We identify critical actors by combining the result of determining critical actors using the Stojmenovich’s method with the connectivity dominating set (CDS) of the network. This hybrid method of detecting critical actors helps in detecting critical nodes and candidate replacement actors more precisely while minimizing the total number of required messages for network restoration. The failure handling of actors is done in a proactive manner. Our proposed method minimizes both the restoration time of network and the total number of actor movements. When a failed actor is a critical node, actors in its neighborhood are relocated in a coordinated way to reconnect the actor network. The superiority of our approach compared to other works is shown by simulative experiments measuring two important parameters to WSANS, namely, the total number of transmitted messages and the total number of actor movements during actor-actor network reconnection process.
منابع مشابه
Clustering of Wireless Sensor and Actor Networks based on Sensor Distribution and Inter-actor Connectivity
Wireless Sensor and Actor Networks (WSANs) employ significantly more capable actor nodes that can collect data from sensors and perform application specific actions. To take these actions collaboratively at any spot in the monitored regions, maximal actor coverage along with inter-actor connectivity is desirable. In this paper, we propose a distributed actor positioning and clustering algorithm...
متن کاملA least-movement topology repair algorithm for partitioned wireless sensor-actor networks
In Wireless Sensor-Actor Networks (WSANs), sensors probe their surroundings and send their data to more capable actor nodes. The actors’ response requires them to coordinate their operation. Therefore, a strongly connected inter-actor topology is necessary and tolerance of an actor failure becomes a design requirement. Autonomous repositioning of actors has been deemed as an effective recovery ...
متن کاملMulti Node Recovery in Wireless Sensor Actor Networks
In wireless sensor-actor networks, the sensors sense the surroundings and transmit the sensed data to the actors. The actor nodes respond collectively to achieve their purpose. Since the actors and sensors have to communicate at all times, a strong network topology has to be established. A failure of an actor may cause the network to be broken into two. The solution can be provided by moving ac...
متن کاملFormal Specification and Validation of a Hybrid Connectivity Restoration Algorithm for Wireless Sensor and Actor Networks †
Maintaining inter-actor connectivity is extremely crucial in mission-critical applications of Wireless Sensor and Actor Networks (WSANs), as actors have to quickly plan optimal coordinated responses to detected events. Failure of a critical actor partitions the inter-actor network into disjoint segments besides leaving a coverage hole, and thus hinders the network operation. This paper presents...
متن کاملHybrid connectivity restoration in wireless sensor and actor networks
Wireless sensor and actor networks are becoming more and more popular in the recent years. Each WSAN consists of numerous sensors and a few actors working collaboratively to carry out specific tasks. Unfortunately, actors are prone to failure due to harsh deployment environments and constrained power, which may break network connectivity resulting in disjoint components. Thus, maintaining the c...
متن کامل